SCHUR FUNCTIONS

1. Schur family

A Schur symmetric function, S-function, $\{\lambda\}$, indexed by a partition λ is the sum of all monomials given by SSYT's of shape λ , with entries from 1 to d. An expansion of $\{\lambda\}$ in terms of monomial symmetric functions is given by

$$\{\lambda\} = \sum_{\mu \vdash |\lambda|} K_{\lambda\mu} \,\mathrm{m}_{\mu}$$

with the coefficients Kostka numbers. $K_{\lambda\mu}$ counts the number of SSYT's of shape λ that contribute the monomial m_{μ} to the sum.

Example. For example, $\lambda = [n]$ gives the diagram consisting of a single row of length n, yielding the homogeneous symmetric function h_n . Similarly, the partition $[1^n]$ corresponds to a diagram consisting of a single column of length n, thus yielding the elementary symmetric function e_n .

Example. In three variables, the S-functions for n = 3 are

$$\{3\} = h_3$$

$$\{21\} = \frac{12}{3} + \frac{13}{2} + \frac{11}{2} + \frac{11}{3} + \frac{11}{3} + \frac{11}{2} + \frac{11}{3} + \frac{12}{3} + \frac{12}{3} + \frac{23}{3} + \frac$$

Taken together the set of S-functions $\{\lambda\}$ ranging over appropriate partitions λ form a basis for the symmetric functions under consideration.

The S-functions have expansions in terms of the p_{λ} 's. The coefficients involve the character table of the symmetric group (χ_{ρ}^{λ}) .

Proposition 1.1. For $\lambda \vdash n$, we have the expansion

$$\{\lambda\} = \sum_{\rho \vdash n} \chi_{\rho}^{\lambda} \frac{\mathbf{p}^{\rho}}{z_{\rho}}$$

Example. The partitions of 3 are [111], [21], [3]. We look up the character table of S_3 :

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$

with rows and columns labelled by the partitions of 3. We have values of z_{ρ} for 3: (3,2,6). Recovering the expansions for e_3 and h_3 , we find a new one:

$$\begin{split} h_3 &= p_1^3/6 + p_2 p_1/2 + p_3/3 \\ \{21\} &= p_1^3/3 - p_3/3 \\ e_3 &= p_1^3/6 - p_2 p_1/2 + p_3/3 \end{split}$$