MONOMIAL SYMMETRIC FUNCTIONS

1. Monomial family

Monomial symmetric functions are denoted m_{λ} indexed by partitions λ. (Note for subscripts we drop the $[$ | notation for partitions, optionally using parens.)

Given $\lambda = [4, 3, 3]$, we form $\xi_{(433)} = x_1^4 x_2^3 x_3^3$. This corresponds to the Young diagram

Then

 $m_{(433)}$ = the minimal symmetric polynomial in d variables containing $\xi_{(433)}$ For $d=3$, we get

$$
m_{(433)} = x_1^4 x_2^3 x_3^3 + x_1^3 x_2^4 x_3^3 + x_1^3 x_2^3 x_3^4
$$

noticing that the exponents are permuted, not the subscripts.

In general, given λ , form the monomial $\xi_{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_L^{\lambda_L}$ and symmetrize over the exponents. This yields all terms containing the variables $\{x_1, \ldots, x_L\}.$

Example. Consider $L = 1$, $\lambda = [n]$. Start with x_1^n and there is no symmetrization with respect to the α exponent (s) . So pick each variable in turn and add in x_i^n at each step. We get

$$
\mathbf{m}_{(n)} = \mathbf{p}_n = x_1^n + \dots + x_d^n
$$

the nth power sum function.

Example. On the other hand, if $\lambda = [111]$, we start with $x_1x_2x_3$, again no symmetrization with respect to the exponents. To symmetrize over the variables, we add up the corresponding products of 3 variables at a time. Thus, we get the elementary symmetric function e3. In general, with $\rho(\lambda) = (1^n)$, i.e., all 1's, we get

$$
m_{(1^n)} = e_n .
$$

Example. Observe that each monomial in m_{λ} is of homogeneous degree $|\lambda| = n$, say. And each λ produces a different monomial function. So the sum over all m_{λ} with $\lambda \vdash n$ is the sum over all monomials of homogeneous degree equal to n which is the nth homogeneous symmetric function. That is,

$$
h_n = \sum_{\lambda \vdash n} m_\lambda \; .
$$

Proposition 1.1. The number of terms in m_{λ} , with $\rho(\lambda) = (1^{\rho_1} 2^{\rho_2} \cdots n^{\rho_n})$, is

$$
\#m_{\lambda} = \binom{d}{L} \frac{L!}{\rho_1! \, \rho_2! \cdots \rho_n!}
$$

Proof. Think of constructing m_{λ} iterating two steps. First pick a subset of L variables, $\binom{d}{L}$ L^d ways. Apply the exponents and symmetrize over the exponents. Repeat for each L -subset and sum everything up. Beginning with a monomial of the form

 $x_{i_1}^{\lambda_1}$ $\frac{\lambda_1}{i_1} x_{i_2}^{\lambda_2}$ $\lambda_2^{\lambda_2} \cdots x_{i_L}^{\lambda_L} =$ product with exponents ρ_1 1's, ρ_2 2's, etc. symmetrizing over the exponents provides a multinomial factor of

$$
\frac{L!}{\rho_1!\,\rho_2!\cdots\rho_n!}
$$

as required. \Box

Example. For $\lambda = [433]$, we get, for $d = 3$,

$$
\#m_{(3^24^1)} = \binom{3}{3} \frac{3!}{2! \, 1!} = 3
$$

as seen above.

Remark. Note that the number of variables, d must satisfy $d \geq L$. In other words, $m_{\lambda} = 0$ if $L > d$.

The monomial functions m_{λ} comprise a linear basis for the corresponding symmetric functions of a given number of variables.