MONOMIAL SYMMETRIC FUNCTIONS

1. Monomial family

Monomial symmetric functions are denoted m_{λ} indexed by partitions λ . (Note for subscripts we drop the [] notation for partitions, optionally using parens.)

Given $\lambda = [4, 3, 3]$, we form $\xi_{(433)} = x_1^4 x_2^3 x_3^3$. This corresponds to the Young diagram

1	1	1	1
2	2	2	
3	3	3	

Then

 $m_{(433)}$ = the minimal symmetric polynomial in d variables containing $\xi_{(433)}$ For d = 3, we get

$$\mathbf{m}_{(433)} = x_1^4 x_2^3 x_3^3 + x_1^3 x_2^4 x_3^3 + x_1^3 x_2^3 x_3^4$$

noticing that the exponents are permuted, not the subscripts. In general, given λ , form the monomial $\xi_{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_L^{\lambda_L}$ and symmetrize over the exponents. This yields all terms containing the variables $\{x_1, ..., x_L\}$.

Example. Consider L = 1, $\lambda = [n]$. Start with x_1^n and there is no symmetrization with respect to the exponent(s). So pick each variable in turn and add in x_i^n at each step. We get

$$\mathbf{m}_{(n)} = \mathbf{p}_n = x_1^n + \dots + x_d^n$$

the n^{th} power sum function.

On the other hand, if $\lambda = [111]$, we start with $x_1 x_2 x_3$, Example. again no symmetrization with respect to the exponents. To symmetrize over the variables, we add up the corresponding products of 3 variables at a time. Thus, we get the elementary symmetric function e_3 . In general, with $\rho(\lambda) = (1^n)$, i.e., all 1's, we get

$$\mathbf{m}_{(1^n)} = \mathbf{e}_n \; .$$

Example. Observe that each monomial in m_{λ} is of homogeneous degree $|\lambda| = n$, say. And each λ produces a different monomial function. So the sum over all m_{λ} with $\lambda \vdash n$ is the sum over all monomials of homogeneous degree equal to n which is the n^{th} homogeneous symmetric function. That is,

$$\mathbf{h}_n = \sum_{\lambda \vdash n} \mathbf{m}_\lambda \ .$$

Proposition 1.1. The number of terms in m_{λ} , with $\rho(\lambda) = (1^{\rho_1} 2^{\rho_2} \cdots n^{\rho_n})$, is

$$\#\mathbf{m}_{\lambda} = \begin{pmatrix} d \\ L \end{pmatrix} \frac{L!}{\rho_1! \, \rho_2! \cdots \rho_n!}$$

Proof. Think of constructing m_{λ} iterating two steps. First pick a subset of L variables, $\binom{d}{L}$ ways. Apply the exponents and symmetrize over the exponents. Repeat for each L-subset and sum everything up. Beginning with a monomial of the form

 $x_{i_1}^{\lambda_1} x_{i_2}^{\lambda_2} \cdots x_{i_L}^{\lambda_L}$ = product with exponents $\rho_1 \ 1's, \ \rho_2 \ 2's$, etc. symmetrizing over the exponents provides a multinomial factor of

$$\frac{L!}{\rho_1!\,\rho_2!\cdots\rho_n!}$$

as required.

Example. For $\lambda = [433]$, we get, for d = 3,

$$\#\mathbf{m}_{(3^24^1)} = \binom{3}{3} \frac{3!}{2! \, 1!} = 3$$

as seen above.

Remark. Note that the number of variables, d must satisfy $d \ge L$. In other words, $m_{\lambda} = 0$ if L > d.

The monomial functions m_{λ} comprise a linear basis for the corresponding symmetric functions of a given number of variables.

 $\mathbf{2}$