HOMOGENEOUS SYMMETRIC FUNCTIONS

1. Homogeneous family

A homogeneous symmetric function with a single integer index, n , is the sum of all monomials of homogeneous degree n . That is,

$$
x_1^{n_1}x_2^{n_2}\cdot\cdot\cdot x_d^{n_d}
$$

has homogeneous degree *n* if the total degree $n_1 + \cdots + n_d = n$. In terms of monomial symmetric functions,

$$
\mathbf{h}_n = \sum_{\lambda \vdash n} \mathbf{m}_{\lambda}
$$

Example. Let $d = 3$. We have

$$
h_4 = x_1^4 + x_2^4 + x_3^4 + x_1^3x_2 + x_1^3x_3 + x_1x_2^3 + x_1x_3^3 + x_2^3x_3 + x_2x_3^3
$$

+ $x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 + x_1^2x_2x_3 + x_1x_2^2x_3 + x_1x_2x_3^2$
= $m_{(4)} + m_{(31)} + m_{(22)} + m_{(211)}$

with $m_{(1111)} = 0$ as $L([1111]) > 3$.

The homogeneous symmetric function indexed by λ is the product of the corresponding single-indexed functions:

$$
h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_L} = h_1^{\rho_1} h_2^{\rho_2} \cdots h_n^{\rho_n} = h^{\rho}
$$

in multi-index notation. Taken together $\{h_\lambda\}$ form a basis for the symmetric functions under consideration.

We have the expansion in terms of monomial symmetric functions.

Proposition 1.1. For given partitions λ , μ , let $S_{\lambda\mu}$ denote the number of nonnegative integer matrices with row sums λ_i and column sums μ_j , respectively. Then we have

$$
h_\lambda = \sum_\mu S_{\lambda\mu} m_\mu
$$

In fact, the transition matrix $S_{\lambda\mu}$ is symmetric.

1.1. Diagrams. The homogeneous symmetric functions correspond to single-rowed SSYT's. E.g., h_4 is the sum of all SSYT's with shape

For $d = 2$, we have

$$
h_3 = \boxed{1 \mid 1 \mid 1 \mid 1 \mid 1 \mid 2 \mid + \lfloor 1 \mid 2 \mid 2 \rfloor + \lfloor 2 \mid 2 \mid 2 \rfloor}
$$

the diagrams indicating the corresponding monomials.

Proposition 1.2. The number of terms in h_n is

$$
\#h_n = \binom{n+d-1}{n}
$$

Proof. The number of monomials of degree n in d variables is the coefficient of v^n in the expansion of $(1-v)^{-d}$, namely $\frac{(d)_n}{d}$ n! which rearranges accordingly. \Box

Example. For $d = 2$, $n = 3$, we get

$$
\#h_3 = \binom{4}{3} = 4
$$

as seen above.