
ELEMENTARY SYMMETRIC FUNCTIONS

1. Elementary family

An elementary symmetric function with a single index, n, is the sum
of all monomials each consisting of n factors, the variables taken from
a subset of size n from the d variables available:

en =
∑

n–subsets of {1,...,d}

xi1xi2 · · ·xin

In terms of monomial symmetric functions,

en = m(1n)

In general, e1 = x1 + · · ·+ xd, the sum of the x’s, and ed = x1x2 · · ·xd,
their product.

Remark. Note that en = 0 if n > d.

Example. For example, with d = 4, we have

e1 = x1 + x2 + x3 + x4

e2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x3 + x3x4

e3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

e4 = x1x2x3x4

The elementary symmetric function indexed by λ is the product of the
corresponding single-indexed functions:

eλ = eλ1eλ2 · · · eλL = eρ11 eρ22 · · · eρnn = eρ

in multi-index notation.
Taken together {eλ}λ form a basis for the symmetric functions under
consideration.
We have the expansion in terms of monomial symmetric functions.

Proposition 1.1. For given partitions λ, µ, let Tλµ denote the number
of 0-1 matrices with row sums λi and column sums µj, respectively.
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Then we have
eλ =

∑
µ

Tλµmµ .

In fact, the transition matrix Tλµ is symmetric.

1.1. Diagrams. The elementary symmetric functions correspond to
SSYT’s consisting of a single column. E.g., e3 is the sum of all SSYT’s
with shape

For d = 4, we have

e3 =

1
2
3

+
1
2
4

+
1
3
4

+
2
3
4

the diagrams indicating the corresponding monomials.

Proposition 1.2. The number of terms in en is

#en =

(
d

n

)
Proof. Each monomial summand is the product of x’s with subscripts
taken from an n-subset of the d variables. �

Example. For d = 4, n = 3, we get

#e3 =

(
4

3

)
= 4

as seen above.


