ELEMENTARY SYMMETRIC FUNCTIONS

1. Elementary family

An elementary symmetric function with a single index, n , is the sum of all monomials each consisting of n factors, the variables taken from a subset of size n from the d variables available:

$$
e_n = \sum_{n-\text{subsets of }\{1,\dots,d\}} x_{i_1} x_{i_2} \cdots x_{i_n}
$$

In terms of monomial symmetric functions,

$$
e_n = m_{(1^n)}
$$

In general, $e_1 = x_1 + \cdots + x_d$, the sum of the x's, and $e_d = x_1x_2\cdots x_d$, their product.

Remark. Note that $e_n = 0$ if $n > d$.

Example. For example, with $d = 4$, we have

$$
e_1 = x_1 + x_2 + x_3 + x_4
$$

\n
$$
e_2 = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_3 + x_3x_4
$$

\n
$$
e_3 = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4
$$

\n
$$
e_4 = x_1x_2x_3x_4
$$

The elementary symmetric function indexed by λ is the product of the corresponding single-indexed functions:

$$
e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_L} = e_1^{\rho_1} e_2^{\rho_2} \cdots e_n^{\rho_n} = e^{\rho}
$$

in multi-index notation.

Taken together ${e_{\lambda}}_{\lambda}$ form a basis for the symmetric functions under consideration.

We have the expansion in terms of monomial symmetric functions.

Proposition 1.1. For given partitions λ , μ , let $T_{\lambda\mu}$ denote the number of 0-1 matrices with row sums λ_i and column sums μ_j , respectively.

Then we have

$$
\mathbf{e}_{\lambda} = \sum_{\mu} T_{\lambda \mu} \mathbf{m}_{\mu} .
$$

In fact, the transition matrix $T_{\lambda\mu}$ is symmetric.

1.1. Diagrams. The elementary symmetric functions correspond to SSYT's consisting of a single column. E.g., e³ is the sum of all SSYT's with shape

For $d = 4$, we have

$$
e_3 =
$$

$$
\frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{2}{3}
$$

the diagrams indicating the corresponding monomials.

Proposition 1.2. The number of terms in e_n is

$$
\#e_n = \binom{d}{n}
$$

Proof. Each monomial summand is the product of x 's with subscripts taken from an *n*-subset of the *d* variables. \Box

Example. For $d = 4$, $n = 3$, we get

$$
\#e_3 = \binom{4}{3} = 4
$$

as seen above.